Neue Phasen in den Systemen Nb₂O₅-WO₃ und Ta₂O₅-WO₃

50. Mitt. über "Beiträge zur Chemie der Elemente Niob und Tantal"*

Von

R. Gruehn

Aus dem Anorganisch-chemischen Institut der Universität Münster (Westfalen)
(Eingegangen am 2. August 1965)

Bei Untersuchungen im WO₃-ärmeren Bereich der Systeme Nb₂O₅—WO₃ und Ta₂O₅—WO₃ bis zum Molverhältnis Me₂O₅:WO₃ = 1:2 wurden folgende Phasen neu gefunden: 40 Nb₂O₅ · WO₃—20 Nb₂O₅ · WO₃ (Phasenbreite), 13 Nb₂O₅ · 4 WO₃, 9 Nb₂O₅ · 8 WO₃ (,,Tieftemperaturphase"), 9 Ta₂O₅ · 8 WO₃; ferner eine Mischphase des T-Ta₂O₅, die bis zur Zusammensetzung 13 Ta₂O₅ · 4 WO₃ (bei 1300° C) reicht. Weitere Phasen wurden im System Nb₂O₅—WO₃ bei den Molverhältnissen 8:1—6:1, 7:3, 8:5 und 9:8 (,,Hochtemperaturphase") beobachtet.

Über den WO₃-ärmeren Bereich der Systeme lagen bis Ende 1964 wenige Literaturangaben vor. Goldschmidt¹ beschreibt eine homogene Mischphase vom reinen H-Nb₂O₅ bis zu einer Zusammensetzung mit etwa 50 Mol% WO₃. Dagegen fanden Fiegel, Mohanty und Healy² die Phasengrenze bei 33 Mol% WO₃. Sie berichteten ferner von den zusätzlichen Phasen 3 Nb₂O₅ · 2 WO₃ und Nb₂O₅ · WO₃³, die sie jedoch nicht isolieren konnten. Kovba, Trunov und Simanov⁴ beobachteten die Grenze der H-Nb₂O₅-Mischphase bereits mit 5—10 Mol% WO₃; außerdem

^{* 49.} Mitt.: H. Schäfer, R. Gruehn und F. Schulte, Angew. Chemie, im Druck.

¹ H. J. Goldschmidt, Metallurgia [Manchester] 62, 241 (1960).

² L. J. Fiegel, G. P. Mohanty und J. H. Healy, J. chem. Engng. Data 9, 365 (1964).

 $^{^3}$ Bei diesen Zusammensetzungen sowie bei $3~Ta_2O_5\cdot 4~WO_3^{\,12}$ haben wir keine Verbindungen gefunden. Nb₂O₅ · WO₃ 2 ist möglicherweise als (Nb,W)O_{2,653} \pm $_{0,005}$ zu präzisieren.

⁴ L. M. Kovba, V. K. Trunov und Yu. P. Simanov, J. Neorg. Chim. 9, 1043 (1964).

beschreiben sie die Phasen 4 Nb₂O₅ · WO₃³; 2 Nb₂O₅ · WO₃³ und 4 Nb₂O₅ · 7 WO₃.

Vor dem Abschluß unserer Versuche erhielten wir Kenntnis von einer umfangreichen Kristallstrukturuntersuchung im System $\mathrm{Nb_2O_5}$ — $\mathrm{WO_3}$ durch Roth und $Wadsley^{5, 6}$. Diese bestimmten die verwandten Strukturen der Verbindungen mit den Molverhältnissen $\mathrm{Nb_2O_5}$: $\mathrm{WO_3}$ wie 6:1, 7:3, 8:5 und 9:8. Weitere Phasen wurden mit 15:1³, 1:1³, 13:24 und noch höheren $\mathrm{WO_3}$ -Gehalten beobachtet.

Im Rahmen von Untersuchungen über Verbindungen, die in ihrer Zusammensetzung nur wenig von $\mathrm{Nb_2O_5}^{7,\,8}$ und $\mathrm{Ta_2O_5}^9$ abweichen, interessierten uns die $\mathit{Phasenverh\"{a}ltnisse}$ im $\mathrm{WO_3}$ -armen Bereich der Systeme $\mathrm{Nb_2O_5}$ — $\mathrm{WO_3}$ und $\mathrm{Ta_2O_5}$ — $\mathrm{WO_3}$ bis zum Molverh\"{a}ltnis $\mathrm{Me_2O_5}$: $\mathrm{WO_3}=1:2$. Tablettierte Gemenge der reinen Oxide 10 wurden bei 1000° C an Luft und anschließend in zugeschmolzenen Quarzrohren (200—500 mg Substanz in 0,4—0,8 cm³ Vol) 15—150 Stdn. bei 1300° C erhitzt. Parallelversuche erfolgten bei 1100, 1200 und, mit kürzerer Dauer, bei 1400—1420° C. Nach dem Abschrecken (in Wasser) wurden die Preßlinge auf Gewichtskonstanz geprüft und mit der $\mathit{Guinier}$ methode ($\mathrm{CuK\alpha_1}$ -Strahlung) untersucht. Reine Phasen konnten bei folgenden Bedingungen (Tab. 1) erhalten werden:

\mathbf{m}	ab	~ 1	1 .	4
- 1	H ()	ΗП	16	- 1

Bezei nun dei Phas	Mol—Verh.	oung O/Me	Genauig- keit von O/Me	Darstellung bei °C	Röntgenogr. Befund (R) Strukturbestimm. (S)
[1]	40 Nb ₂ O ₅ :1 WO ₃ bis	2,506	\pm 0,001	1300	R: deutliche Phasen- breite, vgl. auch ⁸
	20:1	2,512	\pm 0,001		S: fehlt noch
[2]	8:1 bis	2,529	\pm 0,002	1300	R: Phasengrenze temperaturabhängig
	6:1	2,538	\pm 0,002	1300—1400	S: ergab für Molverh. 6:1 W (Nb ₁₂ O ₃₃) ⁶
[3]	13:4	2,567	\pm 0,003	1200—1400	R: mit [4] verwandt ⁸ S: 6a

⁵ R. S. Roth und A. D. Wadsley, CSIRO Annual Report, Melbourne 1964.

⁶ R. S. Roth und A. D. Wadsley, Acta Cryst. 19, 26, 32, 38, 42 (1965) sowie (a) im Druck (Anmerkung bei der Korrektur).

⁷ R. Gruehn und H. Schäfer, Naturwiss. **50**, 642 (1963).

[§] R. Gruehn, D. Bergner und H. Schäfer, Vortrag Clausthal 1965 — im Druck.

⁹ H. Schäfer, R. Gruehn, F. Schulte und W. Mertin, Bull. soc. chim. France **1965**, 1161.

 $Me_2O_5 = H-Nb_2O_5$, $T-Nb_2O_5$, $T-Ta_2O_5$ sowie $H-Ta_2O_5$.

Fortsetzung (Tabelle 1)

Bezeich- nung der Phasen	Zusammensetz Mol—Verh. Me ₂ O ₅ : WO ₃	ung O/Me	Genauig- keit von O/Me	Darstellung bei °C	Röntgenogr. Befund (R) Strukturbestimm. (S)
[4]	7:3	2,589	\pm 0,003	1000—1400	S: ergab $W(Nb_{14}W_2O_{44})^6$
[5]	8:5	2,619	\pm 0,003	1250—1350	$\mathbf{S} \colon \underset{\mathbf{W}(\mathbf{Nb_{16}W_{4}O_{55})^{6}}{\mathbf{e}}$
[6 a]	9:8	2,635	\pm 0,005	1000—1100	R: verwandt mit [6 b] S: fehlt noch
[6]	9:8	2,635	$\pm 0,005$	1250—1350	$\begin{array}{c} \mathbf{S} \colon \mathrm{ergab} \\ \mathrm{W} (\mathrm{Nb_{18}W_7O_{69}})^6 \end{array}$
[7 a]	5:9	2,737	± 0,005	1200—1300	R: entspricht ,,4:7"4 vgl. auch ,,13:24"6 S: vgl. ¹³
[8] 1	0 Ta ₂ O ₅ :1 WO ₃		\pm 0,002	1400	R: homogene Phase
	6:1 13:4	2,538 2,567	$\begin{array}{c} \pm \ 0,002 \\ \pm \ 0,003 \end{array}$	1300 1300	ähnlich T-Ta ₂ O ₅ ; Grenze temperatur- abhängig S: fehlt noch
[6 b]	9:8	2,653	± 0,004	1300—1400	R: verwandt mit [6 a] S: fehlt noch
[7 b]	1:2	2,750	\pm 0,005	1300	R: verwandt mit [7 a] S: vgl. 13

Bei 1000° C ist die Umsetzung im Nb₂O₅-reichen Gebiet (Nb₂O₅: WO₃ > 3:1) sowie im System Ta₂O₅—WO₃ noch stark gehemmt. Bemerkenswert ist, daß bei dieser Temperatur im System Nb₂O₅—WO₃ auch die Verbindung [5] noch nicht entsteht, obwohl die Nachbarphasen [4] und [6a] röntgenographisch gut kristallisiert auftreten. Ab 1100° C geht [6a] in [6] über: die Rückwandlung von [6] in [6a] war bei 1000° C nach 5 Tagen noch nicht zu beobachten, trat jedoch bei gleicher Temperatur in Gegenwart von NbOCl₃ als Mineralisator (Transportmittel)¹¹ ein. Dabei wurde [6a] in nadelförmigen Kristallen erhalten.

Im System Ta₂O₅—WO₃ zeigen Guinieraufnahmen von [8], daß Linienverschiebungen mit der Variation der Zusammensetzung auftreten. Wie der Übergang zum nahe verwandten T-Ta₂O₅ erfolgt, ist noch unbekannt.

Besonders ist hervorzuheben, daß die strukturverwandten Phasen [2], [4], [5] und [6] im System Ta₂O₅—WO₃ fehlen: Beziehungen zwischen beiden Systemen bestehen offenbar nur hinsichtlich der Verbindunge

¹¹ H. Schäfer, Chemische Transportreaktionen, Weinheim 1962.

[6b] und [6a] und im WO₃-reichen Gebiet, wo weitere verwandte Phasen auftreten $^{12-14}$.

Die gelbliche Farbe der Stoffe, die nach Erhitzung unter hinreichendem Sauerstoffdruck beobachtet wird, entspricht den maximalen Oxydationsstufen der Komponenten. Bei geringerem O_2 -Druck treten blaue oder grüne (z. B. [4], [5], [6]) Färbungen auf. Strukturbestimmend ist das Verhältnis O/Me; daher kann man diese Stoffe z. T. auch dann gewinnen, wenn W (und Nb) nicht nur in ihrer maximalen Wertigkeit vorliegen. So wurde z. B. der Verbindungstyp [4] = W (Nb₁₄W₂O₄₄) aus Nb₂O₅, NbO₂ und WO₃ auch mit den Zusammensetzungen W (Nb₁₂W₄O₄₄) und W (Nb₁₀W₆O₄₄) dargestellt und damit das W/Nb-Verhältnis der Phasen [5] und [6] überschritten.

Herrn Professor Dr. H. Schäfer möchte ich an dieser Stelle für sein stetes Interesse herzlich danken. Fräulein M. Görbing bin ich für ihre experimentelle Mitarbeit Dank schuldig.

¹² L. M. Kovba und V. K. Trunov, Dokl. Akad. Nauk SSSR. 147, 622 (1962).

¹³ A. Sleight und A. Magnéli, Acta Chem. Scand. 18, 2007 (1964).

¹⁴ G. P. Mohanty und L. J. Fiegel, Acta Cryst. 17, 454 (1964).